Interactive Simulation of the ECG: Effects of Cell Types, Distributions, Shapes and Duration

Comput Cardiol (2010). 2021 Sep:48:10.23919/cinc53138.2021.9662928. doi: 10.23919/cinc53138.2021.9662928. Epub 2022 Jan 10.

Abstract

The shape of the ECG depends on the lead positions but also on the distribution and dispersion of different cell types and their action potential (AP) durations and shapes. We present an interactive JavaScript program that allows fast simulations of the ECG by solving and displaying the dynamics of cardiac cells in tissue using a web browser. We use physiologically accurate ODE models of cardiac cells of different types including SA node, right and left atria, AV node, Purkinje, and right and left ventricular cells with dispersion that accounts for apex-to-base and epi-to-endo variations. The software allows for real-time variations for each cell type and their spatial range so as to identify how the shape of the ECG varies as a function of cell type, distribution, excitation duration and AP shape. The propagation of the wave is visualized in real time through all the regions as parameters are kept fixed or varied to modify ECG morphology. The code solves thousands of simulated cells in real time and is independent of operating system, so it can run on PCs, laptops, tablets and cellphones. This program can be used to teach students, fellows and the general public how and why lead positions and the different cell physiology in the heart affect the various features of the ECG.