Reshaping an Acyclic Nucleoside Phosphonate into a Selective Anti-hepatitis B Virus Compound

J Med Chem. 2022 Jul 14;65(13):9396-9417. doi: 10.1021/acs.jmedchem.2c00667. Epub 2022 Jun 27.

Abstract

Minor structural modifications of acyclic nucleoside phosphonates can dramatically affect their antiviral properties. This work discloses a shift in the selectivity spectrum of 3-hydroxy-2-(phosphonomethoxy)propyl (HPMP) nucleotides from herpesviruses toward hepatitis B virus (HBV) induced by their acyclic chain 2-substitution with a nonpolar group. Two series of racemic (R,S)-2-methyl-3-hydroxy-2-(phosphonomethoxy)propyl (MHPMP) and (R,S)-2-ethynyl-3-hydroxy-2-(phosphonomethoxy)propyl (EHPMP) nucleotides were initially synthesized. Among these, guanine-containing derivatives exhibited significant anti-HBV activities in the submicromolar range. Enantioenriched MHPMPG and EHPMPG analogues were subsequently obtained by Sharpless asymmetric epoxidation. The (S)-enantiomers possessed an 8- to 26-fold higher potency than the relative (R)-forms. A further comparison of the EC90 values indicated that (S)-EHPMPG inhibited HBV replication more effectively than its 2-methyl analogue. A phosphonodiamidate prodrug of (S)-EHPMPG was thus prepared and found to exert a remarkably high anti-HBV activity (EC50 = 9.27 nM) with excellent selectivity (SI50 > 10,787), proving to be a promising candidate for anti-HBV drug development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacology
  • Hepatitis B virus
  • Herpesvirus 1, Cercopithecine*
  • Nucleosides / chemistry
  • Nucleosides / pharmacology
  • Nucleotides
  • Organophosphonates* / chemistry
  • Organophosphonates* / pharmacology

Substances

  • Antiviral Agents
  • Nucleosides
  • Nucleotides
  • Organophosphonates