Multifunctional Mesoporous Polyaniline/Graphene Nanosheets for Flexible Planar Integrated Microsystem of Zinc Ion Microbattery and Gas Sensor

Small. 2022 Jul;18(29):e2200678. doi: 10.1002/smll.202200678. Epub 2022 Jun 26.

Abstract

The prosperity of smart portable microdevices urgently requires an advanced integrated microsystem equipped with cost-effective safe microbatteries and ultra-stable sensitive sensors. However, the practical application of smart microdevices is limited by complex active materials with single function. Here, the two-dimensional (2D) mesoporous nanosheets of polyaniline decorated on graphene with large specific surface area of 141 m2 g-1 , ample active sites, comparable conductivity, and ordered mesopores of 18 nm for a new-type co-planar integrated microsystem of zinc ion microbattery and gas sensor are developed. These unique triple-function mesoporous nanosheets are well proved for dendrite-free zinc anode with long cyclability (>500 h) and small overpotential (48 mV), a high performance cathode of zinc ion microbattery with outstanding volumetric capacity of 78 mAh cm-3 outperforming their counterparts reported, and a highly sensitive gas sensor with a resistance response (ΔR/R0 %) of 118% for 20 ppm NH3 . Moreover, the co-planar battery-sensor integrated microsystem exhibits superior mechanical stability and smart integration. Therefore, this work will open many opportunities to develop multifunctional 2D mesoporous materials for high performance smart integrated microsystems.

Keywords: gas sensors; integrated microsystems; mesoporous nanosheets; zinc anodes; zinc ion microbatteries.