Water footprint and virtual water trade analysis in water-rich basins: Case of the Chaohu Lake Basin in China

Sci Total Environ. 2022 Oct 15:843:156906. doi: 10.1016/j.scitotenv.2022.156906. Epub 2022 Jun 23.

Abstract

Water footprints and virtual water are widely used as essential tools for water use and conservation analysis of basins worldwide. Despite the importance of water-rich basins as the main force for water-saving, water use analysis has been mainly for water-scarce basins rather than water-rich basins in the existing literature. To fill the gap, in this paper, we investigate the water footprint and virtual water trade in a water-rich basin, namely the Chaohu Lake Basin in China, from 2007 to 2017 using input-output analysis. The results show that: (1) Water use efficiency in the Chaohu Lake Basin was significantly improved. The overall trend of the water intensity was declining, decreasing by 10.21 % in 2017 versus 2012; (2) The internal and external water footprints showed an upward trend, and the growth rate of total water footprint was 36.66 %; (3) The basin was a net virtual water exporter, but the net export flows of virtual water has decreased significantly. The virtual water net export flow decreased by 0.12 billion m3 in 2017 versus 2012; (4) Water resources in the basin were mainly used locally, and its supply to other provinces was minimal. Compared with some water-scarce basins such as the Heihe River Basin and Haihe River Basin, the Chaohu Lake Basin shows significant gaps in the virtual water export flow per capita and behaves differently in the proportion of virtual water transfer. Based on the above findings, we conclude with some guidance and implications for local governments and policymakers.

Keywords: Chaohu Lake Basin; Input-output analysis; Virtual water; Water footprint; Water-rich basins.

MeSH terms

  • China
  • Lakes*
  • Rivers
  • Water Resources
  • Water Supply
  • Water*

Substances

  • Water