Application of a microplastic trap to the determination of the factors controlling the lakebed deposition of microplastics

Sci Total Environ. 2022 Oct 15:843:156883. doi: 10.1016/j.scitotenv.2022.156883. Epub 2022 Jun 23.

Abstract

Microplastics (MPs) in aquatic environments are hard to degrade, easy to transport, and potentially hazardous to biota. Previous studies of MPs in lakes have shown that their deposition is a significant process controlling both their lateral dispersal from a source, and their concentration within the water column. However, the lakebed depositional rates of MPs have predominantly been determined using laboratory experiments and/or through model simulations that may not fully reflect field conditions. In this paper, lacustrine depositional rates in Lake Ulansuhai were documented using an MP trap that allowed for the assessment and quantification of the depositional rates of MPs of differing size, density, and shape at three sampling sites over five different time periods. The results showed that the downward flux for all types of MPs near the lakebed was correlated with wind speed. Higher wind speeds led to the resuspension of greater amounts of MPs in the lakebed sediments and the transport of greater amounts of MPs from the lake inlet to the lake interior and outlet along the hydrologic flow directions. Consequently, higher wind speeds increased the abundance of MPs at the sediment-water interface and intensified the vertical mixing of MPs in the lake water, resulting in a higher depositional flux of MPs. Particles of differing size, shape, and density exhibited different depositional rates. In general, fragmentary, larger size, and higher density MPs were more likely to be deposited. Thus, size and shape have a strong effect on the migration and deposition of HDMPs in Lake Ulansuhai.

Keywords: Depositional flux; High-density microplastic; Lacustrine mixing; Lake Ulansuhai; Wind speed.

MeSH terms

  • Environmental Monitoring / methods
  • Geologic Sediments
  • Lakes
  • Microplastics*
  • Plastics
  • Water
  • Water Pollutants, Chemical* / analysis

Substances

  • Microplastics
  • Plastics
  • Water Pollutants, Chemical
  • Water