Is inferior olive central to the pathophysiology of essential tremor? No

Int Rev Neurobiol. 2022:163:167-187. doi: 10.1016/bs.irn.2022.02.010. Epub 2022 Mar 21.

Abstract

Essential tremor (ET) represents one of the commonest movement disorder worldwide and is the most common tremor disorder. ET manifests with various combinations of motor and nonmotor symptoms. The clinical hallmark is a kinetic tremor of upper limbs. Historically, the pathogenesis of ET has been based on the hypothesis of an overactivity of the inferior olive (inferior olive hypothesis: IOH) where the inferior olive would act as the central pace-maker of ET, resulting in impaired electrophysiological discharges of the olivo-cerebellar tract. The absence of structural alterations in post-mortem studies of the inferior olive is a striking argument against the IOH. Furthermore, neuroimaging studies point towards the implication of the cerebello-thalamo-cerebral pathway rather than the IO, and the harmaline model which has been considered as an animal model of ET presents important weaknesses. By contrast, a series of experiments by Louis et al. have provided convincing evidence of impaired wiring of the Purkinje cell microcircuitry and progressive neurodegeneration of the cerebellar cortex. The Purkinje neuron appears as the primary culprit (Purkinjopathy). The cerebellar cortex hypothesis (CCH) has solid neuropathological signatures, unlike the purely physiological IOH. Rather than a dysregulatory electrophysiological disorder suggested by IOH, ET is a clinical-pathological entity similar to late onset neurodegenerative disorders such as Parkinson's disease or Alzheimer's disease. The CCH emphasizes the need to develop novel therapeutic strategies in order to maintain or promote the cerebellar reserve. The modern reconceptualization of ET in a genuine cerebellar disorder is cleaning the IOH to the light of histopathological studies. ET falls in the large basket of the neurodegenerative diseases and we have entered into a novel formulation of the disease pathogenesis with direct impacts on future therapies.

Keywords: Cerebellar cortex; Climbing fibers; Inferior olive; Purkinje neuron; Purkinjopathy; Tremor.

MeSH terms

  • Cerebellum
  • Essential Tremor*
  • Humans
  • Olivary Nucleus* / physiology