Heterometallic Polyoxotitanium Clusters as Bifunctional Electrocatalysts for Overall Water Splitting

Inorg Chem. 2022 Jul 4;61(26):10151-10158. doi: 10.1021/acs.inorgchem.2c01254. Epub 2022 Jun 24.

Abstract

Incorporating heterometal into titanium-oxygen clusters (TOCs) is an effective way to improve its catalytic activity. Herein, we synthesize three novel heterometallic TOCs with the formula of [Ti6Cu2O7(Dmg)2(OAc)4(iPrO)6][H2Ti6Cu2O7(Dmg)2(OAc)4(iPrO)8] ({Ti6Cu2}), [Ti8Cu2O9(Dmg)2(OAc)2(iPrO)12] ({Ti8Cu2}), and [Ti10Co2O6(Dmg)2(Pdc)4(iPrO)18Cl3] ({Ti10Co2}, DmgH2 = dimethylglyoxime; PdcH2 = pyridine-2,3-dicarboxylic acid) using dimethylglyoxime and different carboxylates as the synergistic ligands. By depositing the clusters {Ti6Cu2} and {Ti10Co2} on carbon cloth as electrodes, we investigated the electrocatalytic performance of TOCs for full water splitting for the first time. To reach a 10 mA cm-2 current density in an alkaline solution, the {Ti10Co2}@CC electrode needs an overpotential as low as 120 and 400 mV for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively. In addition, full water-splitting equipment with {Ti10Co2}@CC as a cathode and an anode need only 1.67 V to deliver a current density of 10 mA cm-2. Our work confirmed the potential of noble metal-free TOCs as bifunctional cluster-based electrocatalysts for water splitting, and their activities can be tuned by doping with different metal ions.