Selective Doping to Controllably Tailor Maximum Unit-Cell-Volume Change of Intercalating Li+ -Storage Materials: A Case Study of γ Phase Li3 VO4

Adv Sci (Weinh). 2022 Aug;9(24):e2106003. doi: 10.1002/advs.202106003. Epub 2022 Jun 24.

Abstract

Capacity decay of an intercalating Li+ -storage material is mainly due to the its particle microcracks from stress-causing volume change. To extend its cycle life, its unit-cell-volume change has to be minimized as much as possible. Here, based on a γ-Li3 VO4 model material, the authors explore selective doping as a general strategy to controllably tailor its maximum unit-cell-volume change, then clarify the relationship between its crystal-structure openness and maximum unit-cell-volume change, and finally demonstrate the superiority of "zero-strain" materials within 25-60 °C (especially at 60 °C). With increasing the large-sized Ge4+ dopant, the unit-cell volume of γ-Li3+ x Gex V1- x O4 becomes larger and its crystal structure becomes looser, resulting in the decrease of its maximum unit-cell-volume change. In contrast, the doping with small-sized Si4+ shows a reverse trend. The tailoring reveals that γ-Li3.09 Ge0.09 V0.91 O4 owns the smallest maximum unit-cell-volume change of 0.016% in the research field of intercalating Li+ -storage materials. Consequently, γ-Li3.09 Ge0.09 V0.91 O4 nanowires exhibit excellent cycling stability at 25/60 °C with 94.8%/111.5% capacity-retention percentages after 1800/1500 cycles at 2 A g-1 . This material further shows large reversible capacities, proper working potentials, and high rate capability at both temperatures, fully demonstrating its great application potential in long-life lithium-ion batteries.

Keywords: high-temperature operation; in situ characterization; intercalating Li+-storage material; selective doping; zero-strain.