Laser Doppler Flowmetry Combined with Spectroscopy to Determine Peripheral Tissue Perfusion and Oxygen Saturation: A Pilot Study in Healthy Volunteers and Patients with Peripheral Arterial Disease

J Pers Med. 2022 May 24;12(6):853. doi: 10.3390/jpm12060853.

Abstract

Background: In this study, we assessed the ability of the EPOS system (Perimed AB, Järfälla, Stockholm, Sweden) to detect differences in tissue perfusion between healthy volunteers and patients with peripheral arterial disease (PAD) with different severity of disease.

Methods: This single-center prospective pilot study included 10 healthy volunteers and 20 patients with PAD scheduled for endovascular therapy (EVT). EPOS measurements were performed at rest at 32 °C and 44 °C, followed by transcutaneous oxygen pressure (TcPo2) measurements. The measurements were performed on the dorsal and medial side of the foot, as well as the lateral side of the calf. EPOS parameters included hemoglobin oxygen saturation (HbSo2) and speed-resolved red blood cell (RBC) perfusion.

Results: HbSo2 at 44 °C was significantly different between the three groups for all measurement locations. The overall speed-resolved RBC perfusion at 44 °C was statistically significant between the groups on the dorsal and medial side of the foot but not on the calf. TcPo2 values were not significantly different between the three groups.

Conclusions: This study demonstrates that the EPOS system can depict differences in tissue perfusion between healthy volunteers, patients with Fontaine class IIb PAD, and those with Fontaine class III or IV PAD but only after heating to 44 °C.

Keywords: diffuse reflectance spectroscopy; endovascular procedures; laser Doppler flowmetry; peripheral arterial disease; tissue perfusion.

Grants and funding

This research received no external funding.