5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence Imaging for Tumor Detection: Recent Advances and Challenges

Int J Mol Sci. 2022 Jun 9;23(12):6478. doi: 10.3390/ijms23126478.

Abstract

5-Aminolevulinic acid (5-ALA) is a natural amino acid and a precursor of heme and chlorophyll. Exogenously administered 5-ALA is metabolized into protoporphyrin IX (PpIX). PpIX accumulates in cancer cells because of the low activity of ferrochelatase, an enzyme that metabolizes PpIX to heme. High expression of 5-ALA influx transporters, such as peptide transporters 1/2, in cancer cells also enhances PpIX production. Because PpIX radiates red fluorescence when excited with blue/violet light, 5-ALA has been used for the visualization of various tumors. 5-ALA photodynamic diagnosis (PDD) has been shown to improve the tumor removal rate in high-grade gliomas and non-muscular invasive bladder cancers. However, 5-ALA PDD remains a challenge as a diagnostic method because tissue autofluorescence interferes with PpIX signals in cases where tumors emit only weak signals, and non-tumorous lesions, such as inflammatory sites, tend to emit PpIX fluorescence. Here, we review the current outline of 5-ALA PDD and strategies for improving its diagnostic applicability for tumor detection, focusing on optical techniques and 5-ALA metabolic pathways in both viable and necrotic tumor tissues.

Keywords: 5-aminolevulinic acid; photodynamic diagnosis; protoporphyrin IX; tumor.

Publication types

  • Review

MeSH terms

  • Aminolevulinic Acid / pharmacology
  • Cell Line, Tumor
  • Fluorescence
  • Glioma* / drug therapy
  • Heme / metabolism
  • Humans
  • Optical Imaging
  • Photochemotherapy* / methods
  • Photosensitizing Agents / pharmacology
  • Protoporphyrins / metabolism
  • Radiopharmaceuticals

Substances

  • Photosensitizing Agents
  • Protoporphyrins
  • Radiopharmaceuticals
  • Heme
  • Aminolevulinic Acid
  • protoporphyrin IX