Field Investigation of Effect of Plants on Cracks of Compacted Clay Covers at a Contaminated Site

Int J Environ Res Public Health. 2022 Jun 13;19(12):7248. doi: 10.3390/ijerph19127248.

Abstract

Compacted clay covers (CCCs) are effective in restricting the upward migration of volatile organic compound (VOC) and semi-volatile organic compound (SVOC) vapors released mainly from unsaturated contaminated soils and hence mitigate the risks to human health. Desiccation cracking of CCCs would result in numerous preferential channels. VOC or SVOC vapors can prefereially migrate through the cracks and emit into the atmosphere, exposing threats to human health and surrounding environmental acceptors. This study presented results of comprehensive field investigation of desiccation crack distribution in CCCs, where four herbaceous plants were covered at the industrial contaminated site in. The plants included Trefoil, Bermuda grass, Conyza Canadensis, and Paspalum, and the corresponding planting areas were labeled as S1, S2, S3, and S4, respectively. The quantity and geometry parameters of the cracks including crack width, depth, and length, were investigated. The results showed that the cracks of the CCCs were mainly distributed in the areas of S3 (Conyza Canadensis) and S4 (Paspalum), where more cracks were formed when the degree of compaction (DOC) of the CCCs was less than 87%. In addition, the results revealed that: (1) no cracks were found in the area S1 (Trefoil); (2) the quantity, average width, average depth, average length, and maximal length of the cracks in the investigated areas followed S4 (Paspalum) > S3 (Conyza Canadensis) > S2 (Bermuda grass); (3) the maximal crack length in the area S2 (Bermuda grass) was the shortest, which was approximately one-seventh and one-eighth of those in the areas S3 (Conyza Canadensis) and S4 (Paspalum), respectively; and (4) the maximal width and depth of the cracks followed S3 (Conyza Canadensis) > S4 (Paspalum) > S2 (Bermuda grass).

Keywords: CCC crack; compacted clay cover; contaminated site; field test; herbaceous plants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Atmosphere
  • Clay
  • Conyza*
  • Humans
  • Plants
  • Volatile Organic Compounds* / pharmacology

Substances

  • Volatile Organic Compounds
  • Clay

Grants and funding

This study was financially supported by National Key Research and Development Program (Grant No. 2018YFC1803100), Jiangsu Province Key Research and Development Program of China (SBE2022740941), National Natural Science Foundation of China (Grant Nos. 41877248 and 42177133), Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ 1844), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0130).