Breathing, (S)Training and the Pelvic Floor-A Basic Concept

Healthcare (Basel). 2022 Jun 2;10(6):1035. doi: 10.3390/healthcare10061035.

Abstract

Background: The current scientific literature is inconsistent regarding the potential beneficial or deleterious effects of high-intensity physical activities on the pelvic floor (PF) in women. So far, it has not been established with certainty whether disparate breathing mechanisms may exert short- or long-term influence on the PF function in this context, although based on the established physiological interrelationship of breathing with PF activation, this seems plausible.

Objective: To propose a basic concept of the influence of different breathing patterns on the PF during strenuous physical efforts. Methodical approaches: Review of the recent literature, basic knowledge of classical western medicine regarding the principles of muscle physiology and the biomechanics of breathing, additional schematic illustrations, and magnetic resonance imaging (MRI) data corroborate the proposed concept and exemplify the consequences of strenuous efforts on the PF in relation to respective breathing phases.

Conclusion: The pelvic floor muscles (PFMs) physiologically act as expiratory muscles in synergy with the anterolateral abdominal muscles, contracting during expiration and relaxing during inspiration. Obviously, a strenuous physical effort requires an expiratory motor synergy with the PFM and abdominal muscles in a co-contracted status to train the PFM and protect the PF against high intra-abdominal pressure (IAP). Holding breath in an inspiratory pattern during exertion stresses the PF because the high IAP impinges on the relaxed, hence insufficiently protected, PFMs. It seems conceivable that such disadvantageous breathing, if performed regularly and repeatedly, may ultimately cause PF dysfunction. At any rate, future research needs to take into account the respective breathing cycles during measurements and interventions addressing PFM function.

Keywords: breathing; high-intensity physical activity; intra-abdominal pressure; pelvic floor; pelvic floor muscles; straining.

Grants and funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.