Unsupervised Learning Based on Multiple Descriptors for WSIs Diagnosis

Diagnostics (Basel). 2022 Jun 16;12(6):1480. doi: 10.3390/diagnostics12061480.

Abstract

An automatic pathological diagnosis is a challenging task because histopathological images with different cellular heterogeneity representations are sometimes limited. To overcome this, we investigated how the holistic and local appearance features with limited information can be fused to enhance the analysis performance. We propose an unsupervised deep learning model for whole-slide image diagnosis, which uses stacked autoencoders simultaneously feeding multiple-image descriptors such as the histogram of oriented gradients and local binary patterns along with the original image to fuse the heterogeneous features. The pre-trained latent vectors are extracted from each autoencoder, and these fused feature representations are utilized for classification. We observed that training with additional descriptors helps the model to overcome the limitations of multiple variants and the intricate cellular structure of histopathology data by various experiments. Our model outperforms existing state-of-the-art approaches by achieving the highest accuracies of 87.2 for ICIAR2018, 94.6 for Dartmouth, and other significant metrics for public benchmark datasets. Our model does not rely on a specific set of pre-trained features based on classifiers to achieve high performance. Unsupervised spaces are learned from the number of independent multiple descriptors and can be used with different variants of classifiers to classify cancer diseases from whole-slide images. Furthermore, we found that the proposed model classifies the types of breast and lung cancer similar to the viewpoint of pathologists by visualization. We also designed our whole-slide image processing toolbox to extract and process the patches from whole-slide images.

Keywords: autoencoders; classification; computer assisted diagnosis; supervised learning; unsupervised learning; whole-slide imaging.