Uncertainty Quantification in Segmenting Tuberculosis-Consistent Findings in Frontal Chest X-rays

Biomedicines. 2022 Jun 4;10(6):1323. doi: 10.3390/biomedicines10061323.

Abstract

Deep learning (DL) methods have demonstrated superior performance in medical image segmentation tasks. However, selecting a loss function that conforms to the data characteristics is critical for optimal performance. Further, the direct use of traditional DL models does not provide a measure of uncertainty in predictions. Even high-quality automated predictions for medical diagnostic applications demand uncertainty quantification to gain user trust. In this study, we aim to investigate the benefits of (i) selecting an appropriate loss function and (ii) quantifying uncertainty in predictions using a VGG16-based-U-Net model with the Monto-Carlo (MCD) Dropout method for segmenting Tuberculosis (TB)-consistent findings in frontal chest X-rays (CXRs). We determine an optimal uncertainty threshold based on several uncertainty-related metrics. This threshold is used to select and refer highly uncertain cases to an expert. Experimental results demonstrate that (i) the model trained with a modified Focal Tversky loss function delivered superior segmentation performance (mean average precision (mAP): 0.5710, 95% confidence interval (CI): (0.4021,0.7399)), (ii) the model with 30 MC forward passes during inference further improved and stabilized performance (mAP: 0.5721, 95% CI: (0.4032,0.7410), and (iii) an uncertainty threshold of 0.7 is observed to be optimal to refer highly uncertain cases.

Keywords: Monte–Carlo Dropout; chest X-ray; confidence intervals; deep learning; mean average precision; medical image segmentation; tuberculosis; uncertainty; uncertainty quantification.

Grants and funding

This research was supported by the Intramural Research Program of the National Library of Medicine, National Institutes of Health. The funders had no role in the study design, data collection, and analysis, decision to publish, or preparation of the manuscript.