Cross-Sectional Survey of Antibiotic Resistance in Extended Spectrum β-Lactamase-Producing Enterobacteriaceae Isolated from Pigs in Greece

Animals (Basel). 2022 Jun 16;12(12):1560. doi: 10.3390/ani12121560.

Abstract

This study aimed to estimate the prevalence of extended-spectrum β-lactamase-producing (ESBL) bacteria in swine. Thus, 214 fecal samples were collected from suckling and weaned piglets from 34 farms in Greece (out of an overall population of about 14,300 sows). A subset of 78 (36.5%) ESBL producers were identified as E. coli (69/78, 88.5%), K. pneumoniae spp. pneumoniae (3.8%), P. mirabilis (5.1%), E. cloacae complex (1.3%) and S. enterica spp. diarizonae (1.3%). Resistance to at least one class of non-β-lactam antibiotics was detected in 78 isolates. Among the E. coli strains, resistance was identified with regard to aminoglycosides (n = 31), fluoroquinolones (n = 49), tetracycline (n = 26) and trimethoprim/sulfamethoxazole (n = 46). Of the three K. pneumoniae spp. pneumoniae, two displayed resistances to aminoglycosides and all were resistant to fluoroquinolones, tetracyclines and trimethoprim/sulfamethoxazole. As for the four P. mirabilis isolates, three had a resistant phenotype for aminoglycosides and all were resistant to imipenem, fluoroquinolones, tetracyclines and trimethoprim/sulfamethoxazole. Molecular characterization of the isolates revealed the presence of CTX-M, SHV and TEM genes, as well as of genes conferring resistance to fluoroquinolones, aminoglycosides, sulfonamides, trimethoprim, macrolides and colistin. High levels of antimicrobial resistance (AMR) were demonstrated in Greek swine herds posing a concern for the efficacy of treatments at the farm level as well as for public health.

Keywords: ESBL-producing Enterobacteriaceae; Greece; antimicrobial resistance; multidrug resistance genes; pigs.

Grants and funding

This work was carried out under the project “Novel technologies for surveillance and characterization of Extended-spectrum β-lactamase- and Carbapenemase-producing Enterobacteriaceae, in humans and animals (CARBATECH)”, of the Bilateral S&T Cooperation Program Greece–Germany 2017. The European Union and the General Secretariat for Research and Innovation, Ministry of Development & Investments co-funded the Greek side (T2DGE-0944). The Federal Ministry of Education and Research funded the German side (01EI1701 and 13GW0458D). This support is gratefully acknowledged.