Lysozyme is Sterically Trapped Within the Silica Cage in Bioinspired Silica-Lysozyme Composites: A Multi-Technique Understanding of Elusive Protein-Material Interactions

Langmuir. 2022 Jul 5;38(26):8030-8037. doi: 10.1021/acs.langmuir.2c00836. Epub 2022 Jun 23.

Abstract

Lysozyme is widely known to promote the formation of condensed silica networks from solutions containing silicic acid, in a reproducible and cost-effective way. However, little is known about the fate of the protein after the formation of the silica particles. Also, the relative arrangement of the different components in the resulting material is a matter of debate. In this study, we investigate the nature of the protein-silica interactions by means of solid-state nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and electron microscopy. We find that lysozyme and silica are in intimate contact and strongly interacting, but their interaction is neither covalent nor electrostatic: lysozyme is mostly trapped inside the silica by steric effects.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Muramidase* / chemistry
  • Proteins
  • Silicic Acid
  • Silicon Dioxide* / chemistry

Substances

  • Proteins
  • Silicic Acid
  • Silicon Dioxide
  • Muramidase