Mechanistic studies on polyphenol rich fractions of Kangra tea by HPTLC and NMR for their antioxidant activities

J Food Sci Technol. 2022 Jul;59(7):2751-2763. doi: 10.1007/s13197-021-05297-w. Epub 2021 Oct 25.

Abstract

Abstract: The antioxidant activity in tea is largely driven by its polyphenolic content, however, the antioxidant reaction mechanism and the compounds involved are not well characterized. Therefore, in this study, we performed in-depth profiling of the antioxidant reaction mechanism of Green Tea (GT), Black Tea (BT), and their polyphenolic fractions with free radical using state-of-the-art analytical techniques. The polyphenol enriched fractions from GT and BT were isolated using column chromatography. Catechins were isolated and characterized by diverse spectroscopic techniques. Samples were screened for their antioxidant activity by HPTLC and further evaluated using a spectrophotometer. The free radical reactions with GT, BT, enriched fractions viz, GT Polyphenols (GTP), BT Polyphenols (BTP), and isolated catechins were studied using the 13C NMR technique. The highest polyphenol content was found in GTP (795.4 ± 0.012 mg/g) whereas GT (321.0 ± 0.028 mg/g) showed maximum flavonoids content. Individual catechins isolated from GTP were EGCG, ECG, EGC, EC and C. Antioxidant activity followed the order EGCG > ECG > EGC > EC > GTP > C > BTP > GT > BT. In GT, the antioxidant reaction mechanism showed single electron and H-transfer in all catechins, which involved the transformation of the hydroxyl group to the carbonyl group. Whereas in BT theaflavins, conversion of the benzotropolone ring to the six-membered ring was observed.

Supplementary information: The online version contains supplementary material available at 10.1007/s13197-021-05297-w.

Keywords: Antioxidant; Camellia sinensis; DPPH; Flavonoids; Tea polyphenols.