[Temporal and spatial variations of net primary productivity (NPP) and its climate driving effect in the Qinghai-Tibet Plateau, China from 2000 to 2020]

Ying Yong Sheng Tai Xue Bao. 2022 Jun;33(6):1533-1538. doi: 10.13287/j.1001-9332.202206.025.
[Article in Chinese]

Abstract

Qinghai-Tibet Plateau is a "climate change laboratory" for China and the world. Driven by climate change, net primary productivity (NPP) in the Qinghai-Tibet Plateau has significant variations. Using the data of normalized difference vegetation index, digital elevation, annual precipitation, and annual temperature, we explored the temporal and spatial variation characteristics of NPP and its correlation with climate factors on the Qinghai Tibet Plateau from 2000 to 2020. The results showed that NPP of the Qinghai-Tibet Plateau increased significantly from 2000 to 2020, with an increase rate of 1.67 g C·m-2·a-1. The NPP was significantly positively correlated with temperature and precipitation. The climate trend of warming and wetting was an important driving force to promote the significant increase of NPP. The increases of NPP would continue if the climate become warmer and wetter.

青藏高原是我国乃至全世界的“气候变化实验室”,在气候变化驱动下,青藏高原植被净初级生产力(NPP)发生了显著变化。本研究利用归一化植被指数、数字高程、年降水量和年气温等数据,探究2000—2020年青藏高原植被NPP的时空变化特征及其与气候因子的关系。结果表明: 2000—2020年,青藏高原植被NPP呈显著增加趋势,NPP增加速率为1.67 g C·m-2·a-1。青藏高原植被NPP空间分布表现为从东南向西北逐渐递减,该分布格局与气温、降水量的空间分布格局基本吻合。植被NPP与气温和降水量变化显著正相关。暖湿化气候变化趋势是促进植被NPP显著增加的重要动力,如果气候持续更暖更湿,青藏高原植被NPP将会持续增加。.

Keywords: Qinghai-Tibet Plateau; climate change; driving mechanism; net primary productivity.

MeSH terms

  • China
  • Climate Change*
  • Ecosystem*
  • Models, Theoretical*
  • Spatio-Temporal Analysis
  • Tibet