Investigation on the Control of COVID-19 in Wuhan: Number of Infections Outside Hospitals and the Reproduction Number

Disaster Med Public Health Prep. 2022 Jun 21:17:e240. doi: 10.1017/dmp.2022.161.

Abstract

COVID-19 is erupting globally, and Wuhan successfully controlled it within a month. Infections arose from infectious persons outside hospitals. After data revision, data-based and model-based analyses were implemented, and the conclusions are as follows. The incubation period of most infected people may be 6-7 days. The number of infectious persons outside hospitals in Wuhan on January 20, 2020 was about 10000 and reached more than 20000 on the day of Lockdown; it exceeded 72000 on February 4. Both data-based and model-based analyses gave out the evolution of the reproduction number, which was over 2.5 in early January, went down to 1.62 in late January and 1.20 in early February, with a sudden drop to less than 0.5 due to the strict Stay-at-home management after February 11. Strategies of Stay-at-home, Safe-protective measures, and Ark hospitals were the main contributions to control COVID-19 in Wuhan. In Wuhan, 2 inflection points of COVID-19, exactly correspond to February 5 and February 15, the 2 days when Ark hospitals were introduced, and the complete implementation of Stay-at-home. Based on the expression of the reproduction number, group immunity is also discussed. It shows that only when the group immunization rate is over 75% can COVID-19 be under control; group immunity would be full infection and the total deaths will be 220000 for a city as big as Wuhan. Sensitivity analysis suggests that 30% of people staying at home in combination with better behavior changes, such as social-distancing and frequent handwashing, can effectively contain COVID-19. However, only when this proportion is over 60% can the controlled effect and efficiency like Wuhan be obtained.

Keywords: COVID-19; data-based; disease reproduction number; model-based; new coronavirus; stay-at-home.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19* / epidemiology
  • COVID-19* / prevention & control
  • China / epidemiology
  • Communicable Disease Control
  • Hospitals
  • Humans
  • SARS-CoV-2
  • Time