Valorization of fruit waste-based biochar for arsenic removal in soils

Environ Res. 2022 Oct:213:113710. doi: 10.1016/j.envres.2022.113710. Epub 2022 Jun 18.

Abstract

Fruit waste disposal is a serious global problem with only 20% of such waste being routinely treated prior to discharge. Two of the most polluting fruit wastes are orange peel and walnut shell and new methods are urgently required to valorize such waste. In the present study, they where valorized via conversion into biochars at 500 °C (OPB500 for orange peel-based biochar produced at 500 °C and WaSB500 for walnut shell-based biochar produced at 500 °C), and evaluated for arsenic adsorption. A pore-rich surface morphology was observed with a low H/C ratio indicating high stability. Spectroscopic studies revealed the presence of minerals and surface functional groups (amide, carbonyl, carboxyl, and hydroxyl) suggesting high potential for arsenic immobilization. Adsorption studies revealed an arsenic removal efficiency of 88.8 ± 0.04% for WaSB500 exposed to initial arsenic concentration of 8 ppm for 5% biochar dose at 25 °C and 30 min contact time. In comparison, OPB500 showed slightly lower removal efficiency of 80.7 ± 0.1% (10 ppm initial concentration, 5% dose, 25 °C, 90 min contact time). Peak shifts in XRD and FTIR spectra together with isotherm, kinetic, and thermodynamic studies suggested arsenic sequestration was achieved via a combination of chemisorption, physisorption, ion exchange, and diffusion. The present investigation suggests valorization of fruit waste into thermo-stable biochars for sustainable arsenic remediation in dynamic soil/water systems and establishes biochar's importance for waste biomass minimization and metal (loid) removal from fertile soils.

Keywords: Adsorption; Arsenic; Biochar; Orange peel; Walnut shell.

MeSH terms

  • Adsorption
  • Arsenic* / chemistry
  • Charcoal / chemistry
  • Fruit
  • Soil

Substances

  • Soil
  • biochar
  • Charcoal
  • Arsenic