Chemometric optimization of salting-out assisted liquid-liquid extraction (SALLE) combined with LC-MS/MS for the analysis of carvedilol enantiomers in human plasma: Application to clinical pharmacokinetics

J Chromatogr B Analyt Technol Biomed Life Sci. 2022 Aug 1:1205:123338. doi: 10.1016/j.jchromb.2022.123338. Epub 2022 Jun 11.

Abstract

Carvedilol is a commonly used antihypertensive whose oral absorption is limited by low solubility and significant first-pass metabolism. This work aimed to apply chemometrics for the optimization of a salting-out assisted liquid-liquid extraction (SALLE) combined with LC-MS/MS to analyze carvedilol enantiomers in plasma samples. Method development and validation were driven for application in pharmacokinetic studies. Parameters that influence the efficiency of SALLE were evaluated using a fractional factorial 24-1 design with 4 factors and a central composite design was used to evaluate the optimal extraction condition. Carvedilol enantiomers and the internal standard lidocaine were separated on an Astec® Chirobiotic® V column and a mixture of methanol:ethanol (90:10, v/v) with 0.02% diethylamine and 0.18% acetic acid as mobile phase. The positive ion mode on electrospray ionization was used to monitor the transitions of m/z 407 > 100 and 235 > 86 for carvedilol enantiomers and lidocaine, respectively. Acetonitrile and ammonium acetate solution were selected for sample preparation by SALLE. Surface graphs and the desirability test were used to define the optimized SALLE conditions which resulted in 93% recovery for both carvedilol enantiomers. The method was linear in the range of 0.5 to 100 ng/mL in plasma, with a lower limit of quantification of 0.5 ng/mL. Within-run and between-run precision (as the relative standard deviation) were all < 9.74% and accuracy (as relative error) did not exceed ± 10.30%. Residual effect and matrix effect were not observed. Carvedilol enantiomers were stable in plasma under the storage, preparation, and analysis conditions. The validated method was successfully applied to analyze carvedilol in plasma samples from patients previously submitted to a Roux-en-Y gastric bypass surgery treated with a single oral dose of 25 mg racemic-carvedilol. Higher plasma concentrations were observed for (R)-(+)-carvedilol when compared to (S)-(-)-carvedilol in two patients post-bariatric surgery.

Keywords: Carvedilol enantiomers; Chemometrics; Human plasma; LC-MS/MS; Pharmacokinetics; SALLE.

MeSH terms

  • Carvedilol
  • Chemometrics*
  • Chromatography, Liquid / methods
  • Humans
  • Lidocaine
  • Liquid-Liquid Extraction / methods
  • Reproducibility of Results
  • Stereoisomerism
  • Tandem Mass Spectrometry* / methods

Substances

  • Carvedilol
  • Lidocaine