Computer-Assisted Discovery of Alkaloids with Schistosomicidal Activity

Curr Issues Mol Biol. 2022 Jan 15;44(1):383-408. doi: 10.3390/cimb44010028.

Abstract

Schistosomiasis is a chronic parasitic disease caused by trematodes of the genus Schistosoma; it is commonly caused by Schistosoma mansoni, which is transmitted by Bioamphalaria snails. Studies show that more than 200 million people are infected and that more than 90% of them live in Africa. Treatment with praziquantel has the best cost-benefit result on the market. However, hypersensitivity, allergy, and drug resistance are frequently presented after administration. From this perspective, ligand-based and structure-based virtual screening (VS) techniques were combined to select potentially active alkaloids against S. mansoni from an internal dataset (SistematX). A set of molecules with known activity against S. mansoni was selected from the ChEMBL database to create two different models with accuracy greater than 84%, enabling ligand-based VS of the alkaloid bank. Subsequently, structure-based VS was performed through molecular docking using four targets of the parasite. Finally, five consensus hits (i.e., five alkaloids with schistosomicidal potential), were selected. In addition, in silico evaluations of the metabolism, toxicity, and drug-like profile of these five selected alkaloids were carried out. Two of them, namely, 11,12-methylethylenedioxypropoxy and methyl-3-oxo-12-methoxy-n(1)-decarbomethoxy-14,15-didehydrochanofruticosinate, had plausible toxicity, metabolomics, and toxicity profiles. These two alkaloids could serve as starting points for the development of new schistosomicidal compounds based on natural products.

Keywords: MuDRA; Schistosoma mansoni; alkaloids; molecular docking; random forest.