In-Bi Electrocatalyst for the Reduction of CO2 to Formate in a Wide Potential Window

ACS Appl Mater Interfaces. 2022 Jun 29;14(25):28890-28899. doi: 10.1021/acsami.2c05596. Epub 2022 Jun 17.

Abstract

The CO2 atmospheric concentration level hit the record at more than 400 ppm and is predicted to keep increasing as the dependence on fossil fuels is inevitable. The CO2 electrocatalytic conversion becomes an alternative due to its environmental and energy-friendly properties and benign operation condition. Lately, bimetallic materials have drawn significant interest as electrocatalysts due to their distinct properties, which the parents' metal cannot mimic. Herein, the indium-bismuth nanosphere (In16Bi84 NS) was fabricated via the facile liquid-polyol technique. The In16Bi84 NS exhibits exceptional performance for CO2 reduction to formate, with the faradaic efficiency (FE) approaching ∼100% and a corresponding partial current density of 14.1 mA cm-2 at -0.94 V [vs the reversible hydrogen electrode (RHE)]. Furthermore, the FE could be maintained above 90% in a wide potential window (-0.84 to -1.54 V vs the RHE). This superior performance is attributed to the tuned electronic properties induced by the synergistic interaction between In and Bi, enabling the intermediates to be stably adsorbed on the catalyst surface to generate more formate ions.

Keywords: bimetal; bismuth; carbon dioxide; formate; indium; nanospheres.