Transparent Conducting Films Based on Carbon Nanotubes: Rational Design toward the Theoretical Limit

Adv Sci (Weinh). 2022 Aug;9(24):e2201673. doi: 10.1002/advs.202201673. Epub 2022 Jun 16.

Abstract

Electrically conductive thin-film materials possessing high transparency are essential components for many optoelectronic devices. The advancement in the transparent conductor applications requires a replacement of indium tin oxide (ITO), one of the key materials in electronics. ITO and other transparent conductive metal oxides have several drawbacks, including poor flexibility, high refractive index and haze, limited chemical stability, and depleted raw material supply. Single-walled carbon nanotubes (SWCNTs) are a promising alternative for transparent conducting films (TCFs) because of their unique and excellent chemical and physical properties. Here, the latest achievements in the optoelectronic performance of TCFs based on SWCNTs are analyzed. Various approaches to evaluate the performance of transparent electrodes are briefly reviewed. A roadmap for further research and development of the transparent conductors using "rational design," which breaks the deadlock for obtaining the TCFs with a performance close to the theoretical limit, is also described.

Keywords: carbon nanotubes; chemical vapor deposition (CVD); optoelectronics; transparent conductors.

Publication types

  • Review