Epigenetic Alterations of DNA Methylation and miRNA Contribution to Lung Adenocarcinoma

Front Genet. 2022 May 31:13:817552. doi: 10.3389/fgene.2022.817552. eCollection 2022.

Abstract

This study focused on the epigenetic alterations of DNA methylation and miRNAs for lung adenocarcinoma (LUAD) diagnosis and treatment using bioinformatics analyses. DNA methylation data and mRNA and miRNA expression microarray data were obtained from The Cancer Genome Atlas (TCGA) database. The differentially methylated genes (DMGs), differentially expressed genes (DEGs), and differentially expressed miRNAs were analyzed by using the limma package. The DAVID database performed GO and KEGG pathway enrichment analyses. Using STRING and Cytoscape, we constructed the protein-protein interaction (PPI) network and achieved visualization. The online analysis tool CMap was used to identify potential small-molecule drugs for LUAD. In LUAD, 607 high miRNA-targeting downregulated genes and 925 low miRNA-targeting upregulated genes, as well as 284 hypermethylated low-expression genes and 315 hypomethylated high-expression genes, were obtained. They were mainly enriched in terms of pathways in cancer, neuroactive ligand-receptor interaction, cAMP signaling pathway, and cytosolic DNA-sensing pathway. In addition, 40 upregulated and 84 downregulated genes were regulated by both aberrant alternations of DNA methylation and miRNAs. Five small-molecule drugs were identified as a potential treatment for LUAD, and five hub genes (SLC2A1, PAX6, LEP, KLF4, and FGF10) were found in PPI, and two of them (SLC2A1 and KLF4) may be related to the prognosis of LUAD. In summary, our study identified a series of differentially expressed genes associated with epigenetic alterations of DNA methylation and miRNA in LUAD. Five small-molecule drugs and five hub genes may be promising drugs and targets for LUAD treatment.

Keywords: DNA methylation; epigenetics; lung adenocarcinoma; mRNA; miRNA.