Particle Swarm Predictions of a SrB8 Monolayer with 12-Fold Metal Coordination

J Am Chem Soc. 2022 Jun 29;144(25):11120-11128. doi: 10.1021/jacs.1c13654. Epub 2022 Jun 16.

Abstract

Materials containing planar hypercoordinate motifs greatly enriched the fundamental understanding of chemical bonding. Herein, by means of first-principles calculations combined with global minimum search, we discovered the two-dimensional (2D) SrB8 monolayer, which has the highest planar coordination number (12) reported so far in extended periodic materials. In the SrB8 monolayer, bridged B8 units are forming the boron monolayer consisting of B12 rings, and the Sr atoms are embedded at the center of these B12 rings, leading to the Sr@B12 motifs. The SrB8 monolayer has good thermodynamic, kinetic, and thermal stabilities, which is attributed to the geometry fit between the size of the Sr atom and cavity of the B12 rings, as well as the electron transfer from Sr atoms to electron-deficient boron network. Placing the SrB8 monolayer on the Ag(001) surface shows good commensurability of the lattices and small vertical structure undulations, suggesting the feasibility of its experimental realization by epitaxial growth. Potential applications of the SrB8 monolayer on metal ions storage (for Li, Na, and K) are explored.