Predictors of rapid eye movement sleep behavior disorder in patients with Parkinson's disease based on random forest and decision tree

PLoS One. 2022 Jun 16;17(6):e0269392. doi: 10.1371/journal.pone.0269392. eCollection 2022.

Abstract

Background and objectives: Sleep disorders related to Parkinson's disease (PD) have recently attracted increasing attention, but there are few clinical reports on the correlation of Parkinson's disease patients with rapid eye movement (REM) sleep behavior disorder (RBD). Therefore, this study conducted a cognitive function examination for Parkinson's disease patients and discussed the application effect of three algorithms in the screening of influencing factors and risk prediction effects.

Methods: Three algorithms (logistic regression, machine learning-based regression trees and random forest) were used to establish a prediction model for PD-RBD patients, and the application effects of the three algorithms in the screening of influencing factors and the risk prediction of PD-RBD were discussed.

Results: The subjects included 169 patients with Parkinson's disease (Parkinson's disease with RBD [PD-RBD] = 69 subjects; Parkinson's disease without RBD [PD-nRBD] = 100 subjects). This study compared the predictive performance of RF, decision tree and logistic regression, selected a final model with the best model performance and proposed the importance of variables in the final model. After the analysis, the accuracy of RF (83.05%) was better than that of the other models (decision tree = 75.10%, logistic regression = 71.62%). PQSI, Scopa-AUT score, MoCA score, MMSE score, AGE, LEDD, PD-course, UPDRS total score, ESS score, NMSQ, disease type, RLSRS, HAMD, UPDRS III and PDOnsetage are the main variables for predicting RBD, along with increased weight. Among them, PQSI is the most important factor. The prediction model of Parkinson's disease RBD that was established in this study will help in screening out predictive factors and in providing a reference for the prognosis and preventive treatment of PD-RBD patients.

Conclusions: The random forest model had good performance in the prediction and evaluation of PD-RBD influencing factors and was superior to decision tree and traditional logistic regression models in many aspects, which can provide a reference for the prognosis and preventive treatment of PD-RBD patients.

MeSH terms

  • Decision Trees
  • Disease Progression
  • Humans
  • Mental Status and Dementia Tests
  • Parkinson Disease* / complications
  • Parkinson Disease* / diagnosis
  • REM Sleep Behavior Disorder* / complications
  • REM Sleep Behavior Disorder* / diagnosis

Grants and funding

The author(s) received no specific funding for this work.