Iron uptake, signaling, and sensing in plants

Plant Commun. 2022 Sep 12;3(5):100349. doi: 10.1016/j.xplc.2022.100349. Epub 2022 Jun 14.

Abstract

Iron (Fe) is an essential micronutrient that affects the growth and development of plants because it participates as a cofactor in numerous physiological and biochemical reactions. As a transition metal, Fe is redox active. Fe often exists in soil in the form of insoluble ferric hydroxides that are not bioavailable to plants. Plants have developed sophisticated mechanisms to ensure an adequate supply of Fe in a fluctuating environment. Plants can sense Fe status and modulate the transcription of Fe uptake-associated genes, finally controlling Fe uptake from soil to root. There is a critical need to understand the molecular mechanisms by which plants maintain Fe homeostasis in response to Fe fluctuations. This review focuses on recent advances in elucidating the functions of Fe signaling components. Taking Arabidopsis thaliana and Oryza sativa as examples, this review begins by discussing the Fe acquisition systems that control Fe uptake from soil, the major components that regulate Fe uptake systems, and the perception of Fe status. Future explorations of Fe signal transduction will pave the way for understanding the regulatory mechanisms that underlie the maintenance of plant Fe homeostasis.

Keywords: Fe sensor; Fe signaling; Fe uptake; iron; metal homeostasis; plant nutrition.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / metabolism
  • Gene Expression Regulation, Plant
  • Iron / metabolism
  • Plants / metabolism
  • Signal Transduction
  • Soil

Substances

  • Arabidopsis Proteins
  • Soil
  • Iron