Interparticle attraction along the direction of the pressure gradient in an acoustic standing wave

Phys Rev E. 2022 May;105(5):L053101. doi: 10.1103/PhysRevE.105.L053101.

Abstract

Scattering of an acoustic wave by particles gives rise to microstreaming, as well as to acoustic radiation and interaction forces on the particles. We numerically study these steady, nonlinear phenomena for a case of two elastic spheres in a standing wave. We show that if one or both spheres are smaller or comparable to the viscous boundary layer, the microstreaming close to the pressure node can lead to an interparticle attraction along the direction of the pressure gradient of the wave. Similar behavior is observed when, instead of size, density of one of the spheres is sufficiently larger relative to the other sphere. These findings could promote the acoustic manipulation of nanoparticles and bacteria.