Direct calculation of the functional inverse of realistic interatomic potentials in field-theoretic simulations

J Chem Phys. 2022 Jun 14;156(22):224115. doi: 10.1063/5.0090333.

Abstract

We discuss the functional inverse problem in field-theoretic simulations for realistic pairwise potentials such as the Morse potential (widely used in particle simulations as an alternative to the 12-6 Lennard-Jones one), and we propose the following two solutions: (a) a numerical one based on direct inversion on a regular grid or deconvolution and (b) an analytical one by expressing attractive and repulsive contributions to the Morse potential as higher-order derivatives of the Dirac delta function; the resulting system of ordinary differential equations in the saddle-point approximation is solved numerically with appropriate model-consistent boundary conditions using a Newton-Raphson method. For the first time, exponential-like, physically realistic pair interactions are analytically treated and incorporated into a field-theoretic framework. The advantages and disadvantages of the two approaches are discussed in detail in connection with numerical findings from test simulations for the radial distribution function of a monatomic fluid at realistic densities providing direct evidence for the capability of the analytical method to resolve structural features down to the Angstrom scale.