Heart age estimated using explainable advanced electrocardiography

Sci Rep. 2022 Jun 14;12(1):9840. doi: 10.1038/s41598-022-13912-9.

Abstract

Electrocardiographic (ECG) Heart Age conveying cardiovascular risk has been estimated by both Bayesian and artificial intelligence approaches. We hypothesised that explainable measures from the 10-s 12-lead ECG could successfully predict Bayesian 5-min ECG Heart Age. Advanced analysis was performed on ECGs from healthy subjects and patients with cardiovascular risk or proven heart disease. Regression models were used to predict patients' Bayesian 5-min ECG Heart Ages from their standard, resting 10-s 12-lead ECGs. The difference between 5-min and 10-s ECG Heart Ages were analyzed, as were the differences between 10-s ECG Heart Age and the chronological age (the Heart Age Gap). In total, 2,771 subjects were included (n = 1682 healthy volunteers, n = 305 with cardiovascular risk factors, n = 784 with cardiovascular disease). Overall, 10-s Heart Age showed strong agreement with the 5-min Heart Age (R2 = 0.94, p < 0.001, mean ± SD bias 0.0 ± 5.1 years). The Heart Age Gap was 0.0 ± 5.7 years in healthy individuals, 7.4 ± 7.3 years in subjects with cardiovascular risk factors (p < 0.001), and 14.3 ± 9.2 years in patients with cardiovascular disease (p < 0.001). Heart Age can be accurately estimated from a 10-s 12-lead ECG in a transparent and explainable fashion based on known ECG measures, without deep neural network-type artificial intelligence techniques. The Heart Age Gap increases markedly with cardiovascular risk and disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artificial Intelligence*
  • Bayes Theorem
  • Cardiovascular Diseases* / diagnosis
  • Child, Preschool
  • Electrocardiography / methods
  • Humans
  • Infant
  • Infant, Newborn
  • Neural Networks, Computer