Biocompatible and optically stable hydrophobic fluorescent carbon dots for isolation and imaging of lipid rafts in model membrane

Anal Bioanal Chem. 2022 Aug;414(20):6055-6067. doi: 10.1007/s00216-022-04165-6. Epub 2022 Jun 14.

Abstract

Lateral heterogeneity in cell membranes features a variety of compositions that influence their inherent properties. One such biophysical variation is the formation of a membrane or lipid raft, which plays important roles in many cellular processes. The lipid rafts on the cell membrane are mostly identified by specific dyes and heavy metal quantum dots, which have their own drawbacks, such as cytotoxicity, photostability, and incompatibility. To this end, we synthesized special, hydrophobic, fluorescent, photostable, and non-cytotoxic carbon dots (CDs) by solvent-free thermal treatment using non-cytotoxic materials and incorporated into the lipid bilayers of giant unilamellar vesicles (GUVs) made from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) lipids. A 2:2:1 mixture of DOPC, DPPC, and cholesterol (Chol) develops lipid rafts on the membrane by phase separation. The photophysical properties of the CDs get modulated on incorporation into the lipid rafts that identifies the membrane heterogeneity. The main attempt in this work is to develop a new, simple, cost-effective, and bio-friendly lipid raft marker, which can be used in biological applications, alongside other conventional raft markers, with more advantages.

Keywords: Biocompatible; Carbon dots; Fluorescence; Hydrophobic; Lipid bilayer; Lipid raft markers.

MeSH terms

  • 1,2-Dipalmitoylphosphatidylcholine / analysis
  • 1,2-Dipalmitoylphosphatidylcholine / chemistry
  • Carbon* / analysis
  • Coloring Agents
  • Lipid Bilayers / chemistry
  • Membrane Microdomains / chemistry
  • Phosphatidylcholines* / chemistry

Substances

  • Coloring Agents
  • Lipid Bilayers
  • Phosphatidylcholines
  • 1,2-Dipalmitoylphosphatidylcholine
  • Carbon