Design and execution of a verification, validation, and uncertainty quantification plan for a numerical model of left ventricular flow after LVAD implantation

PLoS Comput Biol. 2022 Jun 13;18(6):e1010141. doi: 10.1371/journal.pcbi.1010141. eCollection 2022 Jun.

Abstract

Background: Left ventricular assist devices (LVADs) are implantable pumps that act as a life support therapy for patients with severe heart failure. Despite improving the survival rate, LVAD therapy can carry major complications. Particularly, the flow distortion introduced by the LVAD in the left ventricle (LV) may induce thrombus formation. While previous works have used numerical models to study the impact of multiple variables in the intra-LV stagnation regions, a comprehensive validation analysis has never been executed. The main goal of this work is to present a model of the LV-LVAD system and to design and follow a verification, validation and uncertainty quantification (VVUQ) plan based on the ASME V&V40 and V&V20 standards to ensure credible predictions.

Methods: The experiment used to validate the simulation is the SDSU cardiac simulator, a bench mock-up of the cardiovascular system that allows mimicking multiple operation conditions for the heart-LVAD system. The numerical model is based on Alya, the BSC's in-house platform for numerical modelling. Alya solves the Navier-Stokes equation with an Arbitrary Lagrangian-Eulerian (ALE) formulation in a deformable ventricle and includes pressure-driven valves, a 0D Windkessel model for the arterial output and a LVAD boundary condition modeled through a dynamic pressure-flow performance curve. The designed VVUQ plan involves: (a) a risk analysis and the associated credibility goals; (b) a verification stage to ensure correctness in the numerical solution procedure; (c) a sensitivity analysis to quantify the impact of the inputs on the four quantities of interest (QoIs) (average aortic root flow [Formula: see text], maximum aortic root flow [Formula: see text], average LVAD flow [Formula: see text], and maximum LVAD flow [Formula: see text]); (d) an uncertainty quantification using six validation experiments that include extreme operating conditions.

Results: Numerical code verification tests ensured correctness of the solution procedure and numerical calculation verification showed a grid convergence index (GCI)95% <3.3%. The total Sobol indices obtained during the sensitivity analysis demonstrated that the ejection fraction, the heart rate, and the pump performance curve coefficients are the most impactful inputs for the analysed QoIs. The Minkowski norm is used as validation metric for the uncertainty quantification. It shows that the midpoint cases have more accurate results when compared to the extreme cases. The total computational cost of the simulations was above 100 [core-years] executed in around three weeks time span in Marenostrum IV supercomputer.

Conclusions: This work details a novel numerical model for the LV-LVAD system, that is supported by the design and execution of a VVUQ plan created following recognised international standards. We present a methodology demonstrating that stringent VVUQ according to ASME standards is feasible but computationally expensive.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Computer Simulation
  • Heart Failure* / surgery
  • Heart Ventricles
  • Heart-Assist Devices* / adverse effects
  • Hemodynamics
  • Humans
  • Uncertainty

Grants and funding

This project was funded in part by the FDA Critical Path Initiative and by an appointment to the Research Participation Program at the Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, administered by the Oak Ridge Institute for Science, and Education through an interagency agreement between the U.S. Department of Energy and FDA to RAG. MV and AS acknowledge the funding from the project CompBioMed2 (H2020-EU.1.4.1.3. Grant number: 823712), SilicoFCM (H2020-EU.3.1.5. Grant number: 777204), and NEOTEC 2019 - "Generador de Corazones Virtuales" (“Ministerio de Economía y competititvidad”, EXP - 00123159 / SNEO-20191113). AS salary is partially funded by the “Ministerio de Economía y competititvidad” under the Torres Quevedo Program (grant number: PTQ2019-010528). CB salary is partially funded by the Torres Quevedo Program (grant number: PTQ2018-010290). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.