Properties of Free Charge Carriers Govern Exciton Polarization in Plasmonic Semiconductor Nanocrystals

J Phys Chem Lett. 2022 Jun 23;13(24):5545-5552. doi: 10.1021/acs.jpclett.2c00857. Epub 2022 Jun 13.

Abstract

Interaction between a plasmon, as a collective property of charge carriers, and electronic or spin states in complex nanostructures has emerged as one of the fascinating topics that intertwines the fields of photonics, optoelectronics, and spintronics. Here, we investigate the magneto-optical properties of plasmonic InN and Cu2-xSe nanocrystals and show that the complete exciton polarization induced by cyclotron motion of free carriers is a universal phenomenon in semiconductor nanocrystals. The selective exciton polarization is governed by the angular momentum transfer from the carriers following cyclotron orbits to the excited electronic band states and can be controlled by carrier type (electrons or holes), mass, and velocity. The results of this work demonstrate the free-carrier-induced control of the states around the Fermi level and the exciton polarization in technologically important III-V nanocrystals, allowing for new ways of tailoring quantum states for spintronic and optoelectronic applications.