Quantitative Hole Mobility Simulation and Validation in Substituted Acenes

J Phys Chem Lett. 2022 Jun 23;13(24):5530-5537. doi: 10.1021/acs.jpclett.2c00898. Epub 2022 Jun 13.

Abstract

Knowledge of the full phonon spectrum is essential to accurately calculate the dynamic disorder (σ) and hole mobility (μh) in organic semiconductors (OSCs). However, most vibrational spectroscopy techniques under-measure the phonons, thus limiting the phonon validation. Here, we measure and model the full phonon spectrum using multiple spectroscopic techniques and predict μh using σ from only the Γ-point and the full Brillouin zone (FBZ). We find that only inelastic neutron scattering (INS) provides validation of all phonon modes, and that σ in a set of small molecule semiconductors can be miscalculated by up to 28% when comparing Γ-point against FBZ calculations. A subsequent mode analysis shows that many modes contribute to σ and that no single mode dominates. Our results demonstrate the importance of a thoroughly validated phonon calculation, and a need to develop design rules considering the full spectrum of phonon modes.