Overexpression of Activating Transcription Factor-2 (ATF-2) Activates Wnt/Ca2+ Signaling Pathways and Promotes Proliferation and Invasion in Non-Small-Cell Lung Cancer

Dis Markers. 2022 Jun 2:2022:5772089. doi: 10.1155/2022/5772089. eCollection 2022.

Abstract

Previous studies have suggested an association of the expression of activating transcription factor-2 (ATF-2) with the survival time and the activity of the Wnt/Ca2+ signaling pathway in non-small-cell lung cancer (NSCLC). However, the exact role of ATF-2 in tumorigenesis and its underlying mechanism remains unclear. In this study, we study whether ATF-2 regulates the growth and reproduction of NSCLC cells through the Wnt/Ca2+ pathway. The expression of ATF-2 and pathway-related genes in non-small-cell lung cancer was detected by qRT-PCR and Western blotting. CRISPR/Cas9 technology was used to knock out the ATF-2 gene, and pathway inhibitors and agonists were added to induce cultured cells. The expression of pathway genes and the proliferation and invasion ability of A549 lung cancer cells were analyzed. ATF-2 and pathway-related genes were upregulated in NSCLC. The proliferation and invasion ability of A549 lung cancer cells was decreased after only adding pathway inhibitors. The expression of Wnt/Ca2+ pathway protein was decreased when the ATF-2 gene was knocked out, but the expression of Wnt/Ca2+ pathway protein was reversed after the addition of a pathway agonist. These results suggest that ATF-2 acts as an agonist in the Wnt/Ca2+ signaling pathway, promoting the expression of Wnt5a, Wnt11, CaMK II, and NLK in the Wnt/Ca2+ pathway, thereby regulating the proliferation and invasion of NSCLC cells.

MeSH terms

  • Activating Transcription Factor 2 / metabolism*
  • Calcium Signaling
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / metabolism
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / metabolism
  • Protein Serine-Threonine Kinases
  • Wnt Signaling Pathway / genetics

Substances

  • Activating Transcription Factor 2
  • NLK protein, human
  • Protein Serine-Threonine Kinases