A Model for Predicting Cervical Cancer Using Machine Learning Algorithms

Sensors (Basel). 2022 May 29;22(11):4132. doi: 10.3390/s22114132.

Abstract

A growing number of individuals and organizations are turning to machine learning (ML) and deep learning (DL) to analyze massive amounts of data and produce actionable insights. Predicting the early stages of serious illnesses using ML-based schemes, including cancer, kidney failure, and heart attacks, is becoming increasingly common in medical practice. Cervical cancer is one of the most frequent diseases among women, and early diagnosis could be a possible solution for preventing this cancer. Thus, this study presents an astute way to predict cervical cancer with ML algorithms. Research dataset, data pre-processing, predictive model selection (PMS), and pseudo-code are the four phases of the proposed research technique. The PMS section reports experiments with a range of classic machine learning methods, including decision tree (DT), logistic regression (LR), support vector machine (SVM), K-nearest neighbors algorithm (KNN), adaptive boosting, gradient boosting, random forest, and XGBoost. In terms of cervical cancer prediction, the highest classification score of 100% is achieved with random forest (RF), decision tree (DT), adaptive boosting, and gradient boosting algorithms. In contrast, 99% accuracy has been found with SVM. The computational complexity of classic machine learning techniques is computed to assess the efficacy of the models. In addition, 132 Saudi Arabian volunteers were polled as part of this study to learn their thoughts about computer-assisted cervical cancer prediction, to focus attention on the human papillomavirus (HPV).

Keywords: cervical cancer; gradient boosting; human papillomavirus (HPV); machine learning (ML); support vector machine (SVM).

MeSH terms

  • Algorithms
  • Female
  • Humans
  • Machine Learning
  • Saudi Arabia
  • Support Vector Machine
  • Uterine Cervical Neoplasms* / diagnosis