The RHIM of the Immune Adaptor Protein TRIF Forms Hybrid Amyloids with Other Necroptosis-Associated Proteins

Molecules. 2022 May 24;27(11):3382. doi: 10.3390/molecules27113382.

Abstract

TIR-domain-containing adapter-inducing interferon-β (TRIF) is an innate immune protein that serves as an adaptor for multiple cellular signalling outcomes in the context of infection. TRIF is activated via ligation of Toll-like receptors 3 and 4. One outcome of TRIF-directed signalling is the activation of the programmed cell death pathway necroptosis, which is governed by interactions between proteins that contain a RIP Homotypic Interaction Motif (RHIM). TRIF contains a RHIM sequence and can interact with receptor interacting protein kinases 1 (RIPK1) and 3 (RIPK3) to initiate necroptosis. Here, we demonstrate that the RHIM of TRIF is amyloidogenic and supports the formation of homomeric TRIF-containing fibrils. We show that the core tetrad sequence within the RHIM governs the supramolecular organisation of TRIF amyloid assemblies, although the stable amyloid core of TRIF amyloid fibrils comprises a much larger region than the conserved RHIM only. We provide evidence that RHIMs of TRIF, RIPK1 and RIPK3 interact directly to form heteromeric structures and that these TRIF-containing hetero-assemblies display altered and emergent properties that likely underlie necroptosis signalling in response to Toll-like receptor activation.

Keywords: RHIM; RIPK; TRIF; fibrils; functional amyloid; necroptosis.

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism
  • Adaptor Proteins, Vesicular Transport / genetics
  • Adaptor Proteins, Vesicular Transport / metabolism
  • Amyloid* / metabolism
  • Apoptosis / physiology
  • Necroptosis*

Substances

  • Adaptor Proteins, Signal Transducing
  • Adaptor Proteins, Vesicular Transport
  • Amyloid