Sustainable Epoxidized Guayule Natural Rubber, Blends and Composites with Improved Oil Resistance and Greater Stiffness

Materials (Basel). 2022 Jun 1;15(11):3946. doi: 10.3390/ma15113946.

Abstract

Production of petroleum-based synthetic rubbers (SRs) causes an enormous carbon footprint for the rubber industry. Carbon footprint would be reduced if natural rubber (NR) could take a larger market share and replace significant quantities of SR. However, some SRs have higher oil resistance than NRs, and, in applications where these properties are needed, chemically modified NR will be required. Epoxidation is a chemical modification of NR which partially converts unsaturated bonds on the backbone of NR to epoxy groups. In this research, epoxidized guayule natural rubber (EGNR)/guayule natural rubber (GNR) blends and GNR were used to make carbon black (CB) filled composites. The processability, mechanical properties, swelling behaviors and dynamic mechanical properties were characterized at various epoxide fractions. Composites made with EGNR/GNR had higher oil resistance, wet traction and stiffness than GNR composites, although tensile strength and elongation at break were reduced by epoxidation. EGNR is expected to lead to the development of new NR products with similar properties to SR, eroding SR markets and increasing the sustainability of the rubber industry.

Keywords: damping performance; dynamic mechanical properties; epoxidation; natural rubber; oil resistance.