Fast Intercalation of Lithium in Semi-Metallic γ-GeSe Nanosheet: A New Group-IV Monochalcogenide for Lithium-Ion Battery Application

ChemSusChem. 2022 Aug 5;15(15):e202200564. doi: 10.1002/cssc.202200564. Epub 2022 Jun 9.

Abstract

Existence of van der Waals gaps renders two-dimensional (2D) materials ideal passages of lithium for being used as anode materials. However, the requirement of good conductivity significantly limits the choice of 2D candidates. So far, only graphite is satisfying due to its relatively high conductivity. Recently, a new polymorph of layered germanium selenide (γ-GeSe) was proven to be semimetal in its bulk phase with a higher conductivity than graphite while its monolayer behaves semiconducting. In this work, by using first-principles calculations, the possibility was investigated of using this new group-IV monochalcogenide, γ-GeSe, as anode in Li-ion batteries (LIBs). The studies revealed that the Li atom would form an ionic adsorption with adjacent selenium atoms at the hollow site and exist in cationic state (lost 0.89 e to γ-GeSe). Results of climbing image-nudged elastic band showed the diffusion barrier of Li was 0.21 eV in the monolayer limit, which could activate a relatively fast diffusion even at room temperature on the γ-GeSe surface. The calculated theoretical average voltages ranged from 0.071 to 0.015 V at different stoichiometry of Lix GeSe with minor volume variation, suggesting its potential application as anode of LIBs. The predicted moderate binding energy, a low open-circuit voltage (comparable to graphite), and a fast motion of Li suggested that γ-GeSe nanosheet could be chemically exfoliated via Li intercalation and is a promising candidate as the anode material for LIBs.

Keywords: energy storage; exfoliation; first-principles calculations; lithium intercalation; lithium-ion batteries.