Self-Assembly of Colloidal Nanocrystals into 3D Binary Mesocrystals

Acc Chem Res. 2022 Jun 21;55(12):1599-1608. doi: 10.1021/acs.accounts.2c00074. Epub 2022 Jun 9.

Abstract

Biominerals are unique materials found in many living organisms that often display outstanding functionalities attributed to their mesocrystalline structure. Mesocrystals are nanocrystal superstructures with mutual crystallographic alignment of the building units. One could thus imagine these optimized evolutionary systems as archetypes to fabricate advanced materials. The main advantage of such systems relies on their ability to combine the features of the nanocrystals with those of single crystalline microscopic structures, yielding assemblies with directional, enhanced, and potentially emergent properties. Moreover, fueled by the promises of multifunctional materials with unprecedented and tunable properties, the rational design of mesocrystals assembled from two distinct colloidal nanocrystal ensembles has become a recent focus of research. However, the combination of dissimilar nanocrystals into ordered binary superstructures is still a major scientific challenge due to the nature of the coassembly process.We focus this Account on the growth of tridimensional (3D) binary mesocrystals and the understanding of the self-assembly of two colloidal nanocrystal ensembles with the ultimate goal to serve as a basis for more rational mesocrystal syntheses in the future. The formation of mesocrystals demands nanocrystals with defined surface faceting, the primary factor influencing their oriented self-assembly. Notably, such a process cannot be successfully afforded without functionalized nanocrystals with high and, in many cases, tunable colloidal stability. Besides, the nature and solvation degree of the surface ligand shell influences the effective shape of the nanocrystals and the kinetics of self-assembly. If the assembly is triggered by reducing the colloidal stability with nonsolvents, 3D single-component mesocrystals are often grown. Here, the different magnitude of the van der Waals attraction forces between nanocrystals with differing compositions, dimensions, and morphologies generally favors the segregation and growth of single component mesocrystals. This phenomenon was illustrated during the successful preparation of 3D binary mesocrystals composed of iron oxide and platinum nanocubes. Although the building blocks possessed comparable sizes and were stabilized by similar ligands, the amount of the second component could only be arbitrarily tuned up to some extent, even when the assembly conditions were rationally optimized to achieve 3D binary mesocrystals. Only a small amount of it was effectively incorporated into the matrix of the initial mesocrystal. The 3D binary mesocrystal growth process demands a delicate control over the size, shape, and surface chemistry of the nanocrystals, the solvent nature, and the self-assembly process. Hence, the improvement of our ability to control the synthesis of 3D binary mesocrystalline materials is critical to exploit their potential toward technological applications in catalysis, energy storage, or structural materials.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Nanoparticles* / chemistry