Identification of HCN1 as a 14-3-3 client

PLoS One. 2022 Jun 9;17(6):e0268335. doi: 10.1371/journal.pone.0268335. eCollection 2022.

Abstract

Hyperpolarization activated cyclic nucleotide-gated channel 1 (HCN1) is expressed throughout the nervous system and is critical for regulating neuronal excitability, with mutations being associated with multiple forms of epilepsy. Adaptive modulation of HCN1 has been observed, as has pathogenic dysregulation. While the mechanisms underlying this modulation remain incompletely understood, regulation of HCN1 has been shown to include phosphorylation. A candidate phosphorylation-dependent regulator of HCN1 channels is 14-3-3. We used bioinformatics to identify three potential 14-3-3 binding sites in HCN1. We confirmed that 14-3-3 could pull down HCN1 from multiple tissue sources and used HEK293 cells to detail the interaction. Two sites in the intrinsically disordered C-terminus of HCN1 were necessary and sufficient for a phosphorylation-dependent interaction with 14-3-3. The same region of HCN1 containing the 14-3-3 binding peptides is required for phosphorylation-independent protein degradation. We propose a model in which phosphorylation of mouse S810 and S867 (human S789 and S846) recruits 14-3-3 to inhibit a yet unidentified factor signaling for protein degradation, thus increasing the half-life of HCN1.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cyclic Nucleotide-Gated Cation Channels / metabolism
  • HEK293 Cells
  • Humans
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels* / genetics
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels* / metabolism
  • Mice
  • Neurons / metabolism
  • Potassium Channels* / genetics
  • Potassium Channels* / metabolism

Substances

  • Cyclic Nucleotide-Gated Cation Channels
  • Hcn1 protein, mouse
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
  • Potassium Channels