Umpolung in a Pair of Cobalt(III) Terminal Imido/Imidyl Complexes

Angew Chem Int Ed Engl. 2022 Sep 5;61(36):e202206848. doi: 10.1002/anie.202206848. Epub 2022 Aug 3.

Abstract

Reaction of the CoI complex [(TIMMNmes )CoI ](PF6 ) (1) (TIMMNmes =tris-[2-(3-mesityl-imidazolin-2-ylidene)-methyl]amine) with mesityl azide yields the CoIII imide [(TIMMNmes )CoIII (NMes)](PF6 ) (2). Oxidation of 2 with [FeCp2 ](PF6 ) provides access to a rare CoIII imidyl [(TIMMNmes )Co(NMes)](PF6 )2 (3). Single-crystal X-ray diffractometry and EPR spectroscopy confirm the molecular structure of 3 and its S= 1 / 2 ground state. ENDOR, X-ray absorption spectroscopy and computational analyses indicate a ligand-based oxidation; thus, an imidyl-radical electronic structure for 3. Migratory insertion of one ancillary NHC to the imido ligand in 2 gives the CoI N-heterocyclic imine (4) within 12 h. Conversely, it takes merely 0.5 h for 3 to transform to the CoII congener (5). The migratory insertion in 2 occurs via a nucleophilic attack of the imido ligand at the NHC to give 4, whereas in 3, a nucleophilic attack of the NHC at the electrophilic imidyl ligand yields 5. The reactivity shunt upon oxidation of 2 to 3 confirms an umpolung of the imido ligand.

Keywords: Cobalt; Imidyl Radical; N-Heterocyclic Carbene; Terminal Imido; Umpolung.