Complementarity of mDSC, DMA, and DRS Techniques in the Study of Tg and Sub- Tg Transitions in Amorphous Solids: PVPVA, Indomethacin, and Amorphous Solid Dispersions Based on Indomethacin/PVPVA

Mol Pharm. 2022 Jul 4;19(7):2299-2315. doi: 10.1021/acs.molpharmaceut.2c00123. Epub 2022 Jun 8.

Abstract

Recently, glasses, a subset of amorphous solids, have gained attention in various fields, such as polymer chemistry, optical fibers, and pharmaceuticals. One of their characteristic features, the glass transition temperature (Tg) which is absent in 100% crystalline materials, influences several material properties, such as free volume, enthalpy, viscosity, thermodynamic transitions, molecular motions, physical stability, mechanical properties, etc. In addition to Tg, there may be several other temperature-dependent transitions known as sub-Tg transitions (or β-, γ-, and δ-relaxations) which are identified by specific analytical techniques. The study of Tg and sub-Tg transitions occurring in amorphous solids has gained much attention because of its importance in understanding molecular kinetics, and it requires the combination of conventional and novel characterization techniques. In the present study, three different analytical techniques [modulated differential scanning calorimetry (mDSC), dynamic mechanical analysis (DMA), and dielectric relaxation spectroscopy (DRS)] were used to perform comprehensive qualitative/quantitative characterization of molecular relaxations, miscibility, and molecular interactions present in an amorphous polymer (PVPVA), a model drug (indomethacin, IND), and IND/PVPVA-based amorphous solid dispersions (ASDs). This is the first ever reported DMA study on PVPVA in its powder form, which avoids the contribution of solvent to the mechanical properties when a self-standing polymer film is used. A good correlation between the techniques in determining the Tg value of PVPVA, IND, and IND/PVPVA-based ASDs is established, and the negligible difference (within 10 °C) is attributed to the different material properties assessed in each technique. However, the overall Tg behavior, the decrease in Tg with increase in drug loading in ASDs, is universally observed in all the above-mentioned techniques, which reveals their complementarity. DMA and DRS techniques are used to study the different sub-Tg transitions present in PVPVA, amorphous IND, and IND/PVPVA-based ASDs because these transitions are normally too weak or too broad for mDSC to detect. For IND/PVPVA-based ASDs, both techniques show a shift of sub-Tg transitions (or secondary relaxation peaks) toward the high-temperature region from -140 to -45 °C. Thus, this paper outlines the usage of different solid-state characterization techniques in understanding the different molecular dynamics present in the polymer, drug, and their interactions in ASDs with the integrated information obtained from individual techniques.

Keywords: ASDs; PVPVA; amorphous solids; dielectric relaxation spectroscopy; dynamic mechanical analysis; indomethacin; relaxation dynamics; sub-Tg relaxations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calorimetry, Differential Scanning
  • Indomethacin* / chemistry
  • Polymers / chemistry
  • Povidone* / chemistry
  • Solubility
  • Transition Temperature

Substances

  • Polymers
  • Povidone
  • Indomethacin