Perspective on the biotechnological production of bacterial siderophores and their use

Appl Microbiol Biotechnol. 2022 Jun;106(11):3985-4004. doi: 10.1007/s00253-022-11995-y. Epub 2022 Jun 8.

Abstract

Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.

Keywords: Bacterial siderophore production; Biofertilizers; Carbon and nitrogen sources; Iron; Natural chelating agents; pH and temperature.

Publication types

  • Review

MeSH terms

  • Bacteria / metabolism
  • Biotechnology
  • Ferric Compounds* / metabolism
  • Iron / metabolism
  • Siderophores*

Substances

  • Ferric Compounds
  • Siderophores
  • Iron