Steerable drops on heated concentric microgroove arrays

Nat Commun. 2022 Jun 6;13(1):3141. doi: 10.1038/s41467-022-30837-z.

Abstract

Guided drop transport is of great importance in various water and thermal management technologies. Unidirectional drop transport on a hot surface has been widely developed, but a bidirectional reversal is still challenging. Here, we report a steerable transport of drop impinging on heated concentric microgroove arrays, on which the directionality of drop transport is dictated by the drop boiling modes. In the transition boiling state, the driving force originated from the Laplace pressure difference rendered by the microgrooves, which enables the drop rebounding towards the center of curvature. While in the film boiling state, a net force towards the opposite side is generated between the grooves and the penetrated liquid, that drives the drop far away from the center of curvature. Our experimental and theoretical results uncover that the lateral displacement is controlled by both the Weber number and off-center distance. These findings strengthen our fundamental understanding of drop impact dynamics at high temperatures and are essential for effective cooling of hot-spot cores and drop sieving.