Automated soccer head impact exposure tracking using video and deep learning

Sci Rep. 2022 Jun 3;12(1):9282. doi: 10.1038/s41598-022-13220-2.

Abstract

Head impacts are highly prevalent in sports and there is a pressing need to investigate the potential link between head impact exposure and brain injury risk. Wearable impact sensors and manual video analysis have been utilized to collect impact exposure data. However, wearable sensors suffer from high deployment cost and limited accuracy, while manual video analysis is a long and resource-intensive task. Here we develop and apply DeepImpact, a computer vision algorithm to automatically detect soccer headers using soccer game videos. Our data-driven pipeline uses two deep learning networks including an object detection algorithm and temporal shift module to extract visual and temporal features of video segments and classify the segments as header or nonheader events. The networks were trained and validated using a large-scale professional-level soccer video dataset, with labeled ground truth header events. The algorithm achieved 95.3% sensitivity and 96.0% precision in cross-validation, and 92.9% sensitivity and 21.1% precision in an independent test that included videos of five professional soccer games. Video segments identified as headers in the test data set correspond to 3.5 min of total film time, which can be reviewed through additional manual video verification to eliminate false positives. DeepImpact streamlines the process of manual video analysis and can help to collect large-scale soccer head impact exposure datasets for brain injury research. The fully video-based solution is a low-cost alternative for head impact exposure monitoring and may also be expanded to other sports in future work.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain Injuries*
  • Deep Learning*
  • Football*
  • Head
  • Humans
  • Soccer*
  • Video Recording