Deploying two-stage anaerobic process to co-digest greasy sludge and waste activated sludge for effective waste treatment and biogas recovery

J Environ Manage. 2022 Aug 15:316:115307. doi: 10.1016/j.jenvman.2022.115307. Epub 2022 May 22.

Abstract

High-strength waste activated sludge (WAS) and greasy sludge (GS) were largely generated from canned tuna processing. This study reports the performance of the two-stage anaerobic process for co-digesting WAS and GS. Various WAS:GS mixing ratios of 0:100, 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10, and 100:00 (volatile solids (VS) basis) were investigated in batch acidogenic stage at ambient (30 °C ± 3 °C), 55 °C, and 60 °C temperatures. Subsequently, the effluents from the first stage were used to produce methane in the second methanogenic stage at an ambient temperature. The highest methane yield of 609 mL CH4/g-VSadded was achieved using acidogenic effluents generated from a WAS:GS mixing ratio of 40:60 at an ambient temperature. The first-order kinetic constants (k) for the first (k1) and second (k2) stages were subsequently estimated to be 0.457 d-1 and 0.139 d-1, respectively. The obtained k constants were further used to predict the hydraulic retention time (HRT) for the two continuously stirred tank reactors (CSTR) in series. Consequently, the calculated 4-day HRT and 20-day HRT for 50-L CSTR1 and 250-L CSTR2, respectively, were used to operate the continuous two-stage process at an ambient temperature by feeding with a 40:60-WAS:GS mixing ratio. A satisfactory methane yield of 470-mL CH4/g-VS along with 75% chemical oxygen demand (COD) removal was generated. Furthermore, the predicted methane yield of 450-mL CH4/g-VS obtained from the simple kinetic CSTR model resembled the experimental yield with 96% accuracy. The obtained experimental results demonstrate that WAS and GS co-digestion could be successfully accomplished using a practical two-stage anaerobic process operated at an ambient temperature.

Keywords: Biodegradation; Co-digestion process; Gaseous biofuel; Organic industrial waste; Synergisms.

MeSH terms

  • Anaerobiosis
  • Biofuels* / analysis
  • Bioreactors
  • Methane
  • Sewage*

Substances

  • Biofuels
  • Sewage
  • Methane