The Characterization of Pathotypes in Grapevine Downy Mildew Provides Insights into the Breakdown of Rpv3, Rpv10, and Rpv12 Factors in Grapevines

Phytopathology. 2022 Nov;112(11):2329-2340. doi: 10.1094/PHYTO-11-21-0458-R. Epub 2022 Nov 30.

Abstract

We describe a standard method for characterizing the virulence profile of Plasmopara viticola, the causal agent of grapevine downy mildew. We used 33 European strains to inoculate six grapevine varieties carrying the principal factors for resistance to downy mildew (Rpv1, Rpv3.1, Rpv3.2, Rpv5, Rpv6, Rpv10, and Rpv12) and the susceptible Vitis vinifera 'Chardonnay'. For each interaction, we characterized the level of sporulation by image analysis and the intensity of the grapevine hypersensitive response by visual score. We propose a definition for the breakdown of grapevine quantitative resistances combining these two traits. Among the 33 strains analyzed, 28 are virulent on at least one resistance factor. We identified five different pathotypes across the 33 strains analyzed: two pathotypes overcoming a single resistance factor (vir3.1 and vir3.2) and three complex pathotypes overcoming multiple resistance factors (vir3.1,3.2; vir3.2,12; vir3.1,3.2,10). Our findings confirm the widespread occurrence of P. viticola strains overcoming the Rpv3 haplotypes (28 strains). We also detected the first breakdown of resistance to the Rpv10 by a strain from Germany and the breakdown of Rpv12 factors by a strain from Hungary. The pathotyping method proposed here and the associated differential host range lay the groundwork for the early detection of resistance breakdown in grapevines. This approach will also facilitate the monitoring of the evolution of P. viticola populations at large spatial scales. This is an essential step forward to promoting durable management of the resistant grapevine varieties currently available.

Keywords: Plasmopara viticola; pathotype; plant−pathogen interaction; quantitative resistance; resistance breakdown; resistance durability.

MeSH terms

  • Disease Resistance / genetics
  • Oomycetes* / genetics
  • Peronospora* / genetics
  • Plant Diseases
  • Vitis* / physiology