Designing Cu2+ as a Partial Substitution of Protons in Polyaniline Emeraldine Salt: Room-Temperature-Recoverable H2S Sensing Properties and Mechanism Study

ACS Appl Mater Interfaces. 2022 Jun 2. doi: 10.1021/acsami.2c05863. Online ahead of print.

Abstract

Hydrogen sulfide (H2S) sensors are in urgent demand in the field of hermetic environment detection and metabolic disease diagnosis. However, most of the reported room-temperature (RT) H2S sensors based on transition metal oxides/salts unavoidably suffer from the poisoning effect, resulting in the unrecoverable behavior to restrain their application. Herein, copper(II) chloride-doped polyaniline emeraldine salt (PANI-CuCl2) was devised for RT-recoverable H2S detection, where the copper ion (Cu2+) was designed as a partial substitution of protons (H+) in PANI. The prepared gas sensor exhibited full recovery capability toward 0.25-10 ppm H2S, good repeatability, and long-term stability under 80% RH. Meanwhile, the changes of the PANI-CuCl2 during the H2S sensing period were analyzed via multiple analytical methods to reveal the reversible sensing behavior. Results showed that doping of Cu2+ not only promoted the PANI's response through the formation of conductive copper sulfide (CuS) and following H+ redoping in the PANI but also facilitated the sensor's recovery behavior because of the Cu2+ regeneration under the H+/oxygen environment. This work not only proves the changes of the interaction between the PANI and Cu2+ during the H2S sensing period but also sheds light on designing recoverable H2S sensors based on transition metal salts.

Keywords: PANI-CuCl2; hydrogen sulfide sensor; mechanism; recoverable performance; room temperature.